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Contributions
Helps to understand the mechanisms of PatchMatch [1] and its variants.
To that aim we:

• Formalize a generic PatchMatch as a collaborative optimization of
a family of energies related by a propagation graph;

• Derive convergence bounds for this generic PatchMatch;
• Derive specific convergence bounds for two versions of

PatchMatch: the original PatchMatch [1] and CSH [2].

PatchMatch review

PatchMatch is a fast algorithm to find the k best matching patches in
the database image for each patch in a query image. It computes an
approximate solution iteratively via a collaborative random search. In
each iteration the query patches sample database patches and propagate
their best current candidates to their neighbors in the query image.
We provide a generic framework for PatchMatch algorithms and study
their convergence rate towards exact matches.

Propagation graph of the
original PatchMatch

Any DAG can be used
as a propagation graph

Generic PatchMatch formulation
Problem statement (k = 1): We have a family of energies Ux :
B→ R, for x ∈ V . We want to find for each x, ϕx ∈ B such that:

Ux(ϕx) = min
ξ∈B

U(ξ)

To define a PatchMatch algorithm we need:

A propagation graph: A DAG G = (V, E). We denote (y, x) ∈ E
as y ∼ x.

Propagation actions: To each y ∼ x we associate a transformation
Ay,x : B→ B.

Transition kernels: Qi such that for ξ ∈ B, Qi(ξ, · ) is a probability
distribution over B. Random samples are denoted by Siξ ∼ Qi(ξ, · ).

Best operator: Selects the best matching patch from a set of candi-
dates based on the matching energy Ux.

Algorithm 1: Generic patch matching algorithm

Initialize propagation graph G
Initialize matching ϕ0

for n ∈ N do
# update candidates
for x ∈ V following the topological ordering do
ϕn+1/2x = bestx

ϕnx ∪ ⋃
y∼x
Ay,xϕ

n+1
y ∪ ⋃

y∼x
S2Ay,xϕ

n+1
y


ϕn+1x = bestx

(
ϕn+1/2x ∪ S1ϕn+1/2x

)

end

# reverse propagation graph
# update propagation graph

end

Intuition of the proof
Step 1: Constraints propagation. The assumption that
Ux(ϕ

n+1
x ) > ε imposes that Uz(ϕn+1z ) > εz,x for x’s ancestors z. The

levels εz,x > 0 are defined by a backwards recursion on the propagation
graph:

εz,x = min
{
Uz(θ)

∣∣∣∣∣∣∣∣ θ ∈
⋂

y s.t. z∼y
A−1
z,y({Uy > εy,x})

}
Step 2: Worst-case transition. Highest probability of keeping an
energy higher than ε after a random search.

Ci(z, ε) := sup
ξ∈{Uz>ε}

Qi(ξ, {Uz > ε}).

C(z, .) is a non-increasing function such that for ε < 0, C(z, ε) ∈ [0, 1[
and C(z, ε) = 1 for ε 6 0.

(a) Ux energy landscape (b) Uy energy landscape (c) transition kernels

{Ux > ε}
A−1
y,x{Ux > ε}

{Uy > εy,x}

Qi(ξ1, · )

Qi(ξ2, · )

Theoretical results
Theorem (point-wise convergence) For ε > 0 and x ∈ V , we have
after an iteration of the generic PatchMatch:
P(Ux(ϕn+1x ) > ε) 6 P(Ux(ϕnx) > ε)

∏
z∈A

C2(z, εz,x)
µ(z)C1(z, εz,x),

where µ(z) is the number of parents of z.

Additional results in our paper:
• The case of k best matches;
• Uniform convergence and convergence in the mean;
• Specific bounds for the original PatchMatch [1] (improving over

[3]) and for CSH [2].

Experimental validation
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Comparison with the empirical bound: We estimate P(Ux(ϕnx) >
ε) at each iteration n for two query patches x and compare it with our
bound and the one of [3].
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Uniform random search: For k = 1, the gap between the bound
and the empirical decay is mainly due to the worst-case transition C. To
verify this we use the uniform random search. We match two images of
random noise with the query image copied inside the database image.
The plots are for ε = 0.5, and only the unique match is below ε.
With the uniform search, the empirical decay matches the bound, which
coincides with (1−1/p)qn, where p and q are the numbers of database
and query patches.
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