Cாடி

Contributions

Helps to understand the mechanisms of PatchMatch [1] and its variants. To that aim we:

- Formalize a generic PatchMatch as a collaborative optimization of a family of energies related by a propagation graph;
Derive convergence bounds for this generic PatchMatch
Derive specific convergence bounds for two versions of
PatchMatch: the original PatchMatch [1] and CSH [2].

PatchMatch review

PatchMatch is a fast algorithm to find the k best matching patches in the database image for each patch in a query image. It computes an approximate solution iteratively via a collaborative random search. In each iteration the query patches sample database patches and propagate heir best current candidates to their neighbors in the query image. We provide a generic framework for PatchMatch algorithms and study their convergence rate towards exact matches.

$\bullet \cdot \bullet \cdot$
-••••
-.....
-
-. . .
Propagation graph of the
original PatchMatch

Generic PatchMatch formulation
Problem statement $(k=1)$: We have a family of energies U_{x} : $\mathrm{B} \rightarrow \mathbb{R}$, for $x \in \mathcal{V}$. We want to find for each $x, \varphi_{x} \in \mathrm{~B}$ such that: $\mathrm{U}_{\mathrm{x}}\left(\varphi_{\mathrm{x}}\right)=\min _{\xi \in \mathbf{B}} \mathrm{U}(\xi)$

To define a PatchMatch algorithm we need:
A propagation graph: A DAG $\mathcal{G}=(\mathcal{V}, \mathcal{E})$. We denote $(y, x) \in \mathcal{E}$ as $y \sim x$
Propagation actions: To each $y \sim x$ we associate a transformation $\mathrm{A}_{\mathrm{y}, \mathrm{x}}: \mathrm{B} \rightarrow \mathrm{B}$.

Transition kernels: Q_{i} such that for $\xi \in \mathrm{B}, \mathrm{Q}_{\mathrm{i}}(\xi, \cdot)$ is a probability distribution over \mathbf{B}. Random samples are denoted by $S_{i} \xi \sim \mathrm{Q}_{i}(\xi$.).

Best operator: Selects the best matching patch from a set of canddates based on the matching energy U_{x}.

Algorithm 1: Generic patch matching algorithm
nitialize propagation graph \mathcal{G}
Initialize matching φ^{0}
for $n \in \mathbb{N}$ do
\# update candidates
for $x \in \mathcal{V}$ following the topological ordering do

$$
\varphi_{x}^{n+1}=\operatorname{best}_{x}\left(\varphi_{x}^{n+1 / 2} \cup S_{1} \varphi_{x}^{n+1 / 2}\right)
$$

end
\# reverse propagation graph
\# update propagation graph
end

Intuition of the proof

Step 1: Constraints propagation. The assumption that $\mathrm{U}_{x}\left(\varphi_{x}^{n+1}\right) \geqslant \varepsilon$ imposes that $\mathrm{U}_{z}\left(\varphi_{z}^{n+1}\right) \geqslant \varepsilon_{z, x}$ for χ 's ancestors z. The evels $\varepsilon_{z, x} \geqslant 0$ are defined by a backwards recursion on the propagation graph:

$$
\varepsilon_{z, x}=\min \left\{U_{z}(\theta) \mid \theta \in \sum_{y s . t . z \sim y} A_{z, y}^{-1}\left(\left\{U_{y} \geqslant \varepsilon_{y, x}\right\}\right)\right\}
$$

Step 2: Worst-case transition. Highest probability of keeping an energy higher than ε after a random search.

$$
\mathrm{C}_{i}(z, \varepsilon):=\sup _{\xi \in\left\{\mathrm{u}_{z} \geqslant \varepsilon\right\}} \mathrm{Q}_{i}\left(\xi,\left\{\mathrm{U}_{z} \geqslant \varepsilon\right\}\right) .
$$

$C(z,$.$) is a non-increasing function such that for \varepsilon<0, C(z, \varepsilon) \in[0,1[$ and $C(z, \varepsilon)=1$ for $\varepsilon \leqslant 0$.

$\begin{array}{lll}\text { (a) } \mathrm{U}_{x} \text { energy landscape } & \text { (b) } \mathrm{U}_{y} \text { energy landscape } & \text { (c) transition kernels }\end{array}$

Theoretical results

Theorem (point-wise convergence) For $\varepsilon>0$ and $x \in \mathcal{V}$, we have after an iteration of the generic PatchMatch:
$\mathbb{P}\left(\mathrm{U}_{x}\left(\varphi_{x}^{n+1}\right) \geqslant \varepsilon\right) \leqslant \mathbb{P}\left(\mathrm{U}_{x}\left(\varphi_{x}^{n}\right) \geqslant \varepsilon\right) \prod \mathrm{C}_{2}\left(z, \varepsilon_{z, x}\right)^{\mu(z)} \mathrm{C}_{1}\left(z, \varepsilon_{z, x}\right)$,
where $\mu(z)$ is the number of parents of z.

Additional results in our paper.

The case of k best matches
Uniform convergence and convergence in the mean, Specific bounds for the original PatchMatch [1] (improving over [3]) and for CSH [2].

Experimental validation

Comparison with the empirical bound: We estimate $\mathbb{P}\left(\mathrm{U}_{x}\left(\varphi_{x}^{n}\right) \geqslant\right.$ ϵ) at each iteration n for two query patches x and compare it with our bound and the one of [3].

Uniform random search: For $k=1$, the gap between the bound and the empirical decay is mainly due to the worst-case transition C . To verify this we use the uniform random search. We match two images of random noise with the query image copied inside the database image. The plots are for $\varepsilon=0.5$, and only the unique match is below ε. With the uniform search, the empirical decay matches the bound, which coincides with $(1-1 / p)^{q n}$, where p and q are the numbers of database and query patches.

References
Barnes et al. "PatctMMatch: a randonized corresonondence algorithm for structural ingege editing". ACM Transactions
on Graphic: TOG, 2009 ?
Cohereny sesestive hascsing". |EEE ICCV, 2011.
12] Korman and Avidan "Chenerency sesisitiv hassing". IEEE ICV, 2011.

